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Abstract

The Internet Protocol (IP) provides a number of key benefits to networked devices: it serves as a “narrow
waist” enabling functional modularity by decoupling lower-layer devices from application behavior, it
provides a notion of transitive connectivity and a number of standardized methods to achieve it, and most
importantly, it is ubiquitous, enabling almost all networked applications to mutually communicate.

Many embedded microcontrollers cannot take advantage of the benefits of IP because they lack the dedicated
networking hardware which is as a practical matter required to interact with nontrivial networks. I observe
that multihop point-to-point IP networks can in principle be constructed over the communication media
that microcontrollers commonly do have, such as UARTs, I2C, SPI, and CAN bus, but software support is
lacking to make this networking approach accessible.

Therefore, this thesis develops and evaluates interstice, a platform-independent, open-source software
library designed to enable the flexible implementation of modular packet forwarders in userspace. It can
be used to interconnect devices and their IP stacks across a variety of conventional and unconventional
links. interstice exposes a reprogrammable, dynamically-updatable packet-forwarding strategy, enabling
forwarder nodes in principle to act as hubs, bridges, full routers, or implement firewalls or NAT, as appli-
cation requirements and platform constraints permit.

This approach enables benefits for modular, networked systems of microcontrollers which need to talk to
the outside world: using IP enables internal microcontrollers to communicate with external devices such as
PCs and smartphones without the need for application gateways. Further, to the extent that such networks
are runtime-reconfigurable, features of IP such as address assignment, dynamic routing, and link-agnosticity
can be incredibly beneficial.

interstice is evaluated here primarily against networks of various types of serial links (UART, I2C,
CAN) speaking PPP, selected to demonstrate utility of the approach to connect embedded devices lacking
dedicated networking peripherals, and further that link drivers can be specialized to take advantage of
the specific characteristics of each link. The approach is showcased in application scenarios including a
networked milling machine, and is analyzed for a number of performance metrics.
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interstice

That which intervenes between one thing and another; especially, a
space between things closely set, or between the parts which compose

a body.
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1. Introduction
This thesis develops a point-to-point, multihop IP networking approach using PPP links
over various physical connections, especially targeted at operation on embedded micro-
controllers. Each node in the network runs a packet forwarder, interstice , implemented
as a software library; these forwarders have the capability to modularly adopt various
strategies for learning network routes and making forwarding decisions. I implement
flooding and bridging forwarding approaches here and consider an adaptation of the
AODV [3] routing protocol.

The system is benchmarked for throughput, latency, and maximum network size. Inte-
grated approaches including a web-based control and a networked milling machine are
showcased.

This section provides motivation for this work, initial design considerations, and intended
contributions.

1.1. IP
One of the key benefits of the Internet Protocol (IP, both v4 and v6) as standardized
and actually deployed in the world is that it is an effective, ubiquitous “narrow waist”;
a low-leakage abstraction that cleanly separates lower-layer implementation details of
communication channels from the higher-layer semantics of networked applications.

This abstraction is powerful because it enables network technology to evolve separately
from the applications that use it — existing technologies can be made faster (e.g. WiFi,
Ethernet), new technologies can be introduced, and experimental approaches can be
evaluated, all without needing to alter web servers, databases, browsers, and the vast
abundance of other networked applications and services that exist. Hardware, firmware,
and drivers can be freely upgraded and exchanged, as long as they interface cleanly to
the platform’s IP network stack.

On the other hand, from the application perspective, IP is a powerful platform abstraction.
The networked part of an application is essentially portable to any platform with an IP
stack, and the driving hardware is fully abstracted. Writing a web server that only runs
on specific network interface hardware is of limited utility compared to one that works
on any hardware configuration (presuming appropriate driver support).

This approach to building networking functionality hardware has been commodity for at
least 25 years. IP had definitively won out over alternate networking approaches by the
year 2000, and so desktop operating systems have built-in IP stacks, driver frameworks,
and operating system ABI to support the approach.
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1.2. Motivation
This thesis is motivated by my practical experience working on embedded systems. Many
systems I encounter in reality are networks-in-disguise, i.e. they deal with many of the
characteristic problems of computer networks: addressing, traffic multiplexing, transitive
connectivity, framing, routing, naming services, etc., but face practical challenges at
design time that obstruct the adoption of standardized networking techniques, instead
opting to reinvent a subset of these functionalities in application-specific ways.

Unfortunately, reinventing this wheel typically sacrifices a number of benefits as com-
pared to adopting a ready-made network stack. Most obviously, the “narrow-waist”
benefits discussed above disappear entirely: applications are no longer portable, and
networking hardware becomes tightly-coupled to application concerns. Baseline network
functionality that would have come for free becomes dependent on application scope —
true transitive connectivity is rare in these solutions, and applications instead implement
ad-hoc, application-specific bridges on an as-needed basis.

Anecdotally, key problems impeding the adoption of networking approaches in these
cases include technical unfamiliarity, integration burden, and lack of availability of
dedicated networking hardware: adopting e.g. IP is simply seen as having too high of an
activation energy to be worthwhile.

This thesis is an attempt to improve this state of affairs by providing a networking
approach backed by a software toolkit that facilitates the construction of IP networks
out of the (often unplanned) assortment of communication channels available in the
embedded systems space. Networking research has for decades been focused on devices
with high-speed purpose-built hardware, but has neglected those lacking it, which would
nonetheless benefit from even minimal, low-speed network service.

The example systems in Figure 1 showcase a number of applications that could benefit
from this kind of approach.

1.3. Programmer’s model
The usage model I aim for is along the lines of Listing 1: the intent is to produce an embed-
ded-compatible software library that supports this networking functionality at relatively
low overhead for the programmer: a variety of I/O devices can be straightforwardly
attached to the network by some mechanism, and most of the networking functionality
is abstracted away by the software library, providing a plug-and-play networking expe-
rience across a variety of underlying links.

INTRODUCTION 14



(a)

(b)

(c)
(d)

Figure  1:  Examples of “implicitly-networked” applications I have worked on that might
benefit from an available explicit networking approach. a) represents the scriptorium  dis-
tributed PCB milling machine, which has a number of motors controlled by a host computer
over USB. b) captures AirSpec [2] smart glasses, which use a smartphone BLE connection
as an intermediary hop to reach backend servers. c) shows the AstroAnt lunar micro-rover,
which communicates payload data across a wide range of heterogeneous media in both the
mission environment. d) captures a number of features common in hardware products I have
previously worked on in industry: it is a PCB-based hardware assembly comprising several

subsystems that communicate with and through each other.

Obviously, this leaves all questions on the table as to how to design a network and
software library that looks like this: these are discussed in the subsequent sections.
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  main() {
      net_init()
  
      net_attach(uart0)
      net_attach(spi0)
      net_attach(wifi)
  
      sock = net_udp_bind(1234)

      loop {
          sensor_data = read_sensor()
          net_udp_sendto(1.2.3.4:5678, sock, sensor_data)
          delay()
      }
  }

Listing 1:  Pseudocode sketching desired programmer experience.

1.4. Conceptual approach
To outline the problem space, let’s consider some properties we’d want a network like
this to have. In the interest of flexibility for the user, interfaces would be hotpluggable and
the network layer self-bootstrapping, i.e. nodes running the software could be added and
removed from the network freely, and would automatically acquire an addresses without
user input. The approach would support arbitrary connection topologies, i.e. users should
not need to intentionally avoid creating loops — the network’s packet forwarding strategy
should internalize a mechanism to avoid broadcast storm effects. It would efficiently
make use of available links, automatically finding optimal routes between hosts. It would
be compatible with existing networking technology outside the system — it should be
possible to integrate this networking approach with a user’s home or office IP network.
Lastly, it should be generalizable and portable — we want assumptions about the link
layer to be minimal, and the system to run on a wide variety of embedded systems.

To shape my solution, consider this set of practical observations: embedded IP stacks
are commodity; Point-to-Point Protocol (PPP) implementations are plentiful; PPP carries
IP traffic and can run over almost any bidirectional, byte-serial link, making it suitable
for adaptation to almost any communication interface; and yet despite these tools, there
seems to be no popularly-adopted or explored methodology for providing transitive
connectivity¹ over networks of PPP links, and no library of PPP adaptations for common
embedded serial links (outside of UARTs and RS-232).

¹So emphasized because singleton/leaf PPP links do pop up in practical use in embedded systems
occasionally.
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Figure 2: Notional point-to-point networking approach.

The approach I develop here is therefore an IP network of point-to-point links (visualized
by example in Figure 2), typically (though not necessarily) communicating over PPP. The
primary technical work required to enable the approach is the development of a packet
forwarder that can run at each node in order to interconnect the point-to-point links (this
is provided as a software library), and a collection of PPP adaptations for various lower-
layers. The thesis discusses the design and evaluation of this software.

1.5. Notable alternatives
Here, I address a few alternative approaches to this network of point-to-point links, both
to anticipate potential criticism and illustrate the goals of the approach by contrast.

1.5.1. Application gateway architecture

Why build an IP network at all, rather than adopt an application gateway architecture?
This is a conventional way to provide IP services to networks of embedded microcon-
trollers (typically for wireless sensor nets), and has advantages in that it centralizes the
implementation costs of the IP stack to the gateway device, enabling remote devices
to run lighter-weight communication protocols, which can be specialized according to
application requirements.

For example, a system of wireless thermometers as sketched in Figure 3 doesn’t require
each node to have a full IP stack — we know a priori that they just send temperature
readings, so it seems like overkill to provide the complete flexibility (and pay the full cost)
of an IP implementation on each node. Since they will only ever send one type of message,
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Figure 3: Application gateway-oriented networking architecture.

we can keep them simple and use a more capable application gateway device that listens
for the incoming readings and forwards them onto the network layer. The sensors never
see the network, but if it’s useful for downstream concerns, the gateway could always
emulate a separate IP for each device.

While the motivations behind this argument are understandable, and I don’t aim to argue
that a gateway architecture is a bad idea, the factors making the perspective compelling
are that 1) IP stacks are heavy relative to the capabilities of embedded microcontrollers,
and 2) implicitly, adopting IP for this kind of system is assumed to be more complex or
risky than implementing a custom protocol. But (1) has become less true in recent years,
as low-cost, high-capability microcontrollers have become widely available from vendors
such as Espressif, Nordic, and STMicroelectronics. And (2) represents a chicken-and-egg
problem, as it seems likely that IP appears more risky precisely because it is less popular
for this kind of application, meaning that firmware developers are less familiar with it
and solutions are less robust and battle-tested. If IP were seen as the standard approach
for this kind of problem and it was assumed to “just work” at low integration cost, I think
(2) would be a non-issue.

I also want to point out that the solution where each of the thermometers natively speaks
IP has meaningful advantages: the gateway is a single point of failure, so if it goes down,
the whole network goes down, where in principle, with a distributed point-to-point mesh,
the network is naturally fault tolerant for sufficiently-connected topologies. Further, we
benefit from the ubiquity of IP: any client (e.g. a smartphone, a laptop) speaking the
protocol can connect to the devices directly and address each one individually.
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  #if LINUX
  #include <sys/types.h>
  #include <sys/socket.h>
  #else
  #include "myplatform/socket.h"
  #endif
  
  int main() {
      struct sockaddr_in addr;
      int sock = socket(AF_INET, SOCK_DGRAM, 0);

      memset(&addr, 0, sizeof(addr));
      addr.sin_family = AF_INET;
      addr.sin_addr.s_addr = INADDR_ANY;
      addr.sin_port = htons(1234);
      
      bind(sock, (struct sockaddr*)&addr, sizeof(addr));

      while (1) {
          addr.sin_addr.s_addr = INADDR_BROADCAST;
          addr.sin_port = htons(5678);
          
          sendto(sock, "data", strlen("data"), 0, &addr, sizeof(addr));
          sleep(100);
      }
  }

Listing 2: The C-language Berkeley sockets interface is well-standardized and could be emu-
lated by a custom gateway layer in a source-compatible way, enabling software portability.

1.5.2. Sockets-layer emulation

A possible response to the arguments in the previous section is take a middle ground
and say: yes, for some applications, generic network functionality makes sense due to
abstraction benefits and portability. However, we might benefit from a subset of these
narrow-waist benefits of IP by emulating the sockets API specifically, as this is the part of
the IP stack that applications will typically interact with directly.

This kind of approach would enable source compatibility with the Berkeley sockets API
(see Listing 2), enabling direct portability of networked applications across e.g. desktop
and embedded environments, while on the backend the socket API calls would commu-
nicate to the gateway device over a slimmed-down link layer, which would be the only
member of the network providing a complete IP stack. This kind of approach would
presumably provide savings in terms of system resources by not shipping the IP stack
everywhere, while also capturing portability benefits.
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The question this approach begs is how much is actually being saved by not just using an
IP stack, at the point that the remote devices must be IP-aware (in order to address the
transport-layer messages), emulate most the semantics of the used transport layers, and
support an entirely new, custom link protocol. It seems to me that the relative benefits of
using a gateway architecture fall drastically as the approach becomes closer to full IP. This
architecture also still retains the single-point-of-failure in the central gateway, which a
distributed approach does not have.

1.5.3. Existing embedded wireless networking approaches

I will discuss these in further detail in Section 2, but it bears mentioning that low-power
wireless networking for embedded devices has been a major focus of research in the
last quarter-century, and there exist a wide range of approaches available on commodity
microcontrollers that can support our desired networking semantics. These approaches
are readily mobile, relatively robust, and available from a number of vendors.

So why not just use a wireless approach? For one, because the ecosystem is fragmented,
and it seems unrealistic presently to expect a convergence onto a singular technology.
But secondly, and more to my central point: because not every device has, wants, or will
choose to use a wireless radio or indeed any kind of specialized networking peripheral.
Brownfield projects are typically stuck with their hardware choices, and meaningful
tradeoffs exist in new development that may motivate against the selection of certain
integrated wireless functionalities — but despite these considerations, devices may still
want or benefit from network connectivity, and as I show through this thesis, it is possible
to deliver that functionality over the much more ubiquitous embedded serial links that
these devices possess anyway.

1.6. Applications
To ground the concept, I typify below a few applications that I expect would enjoy
concrete benefits from the networking approach I describe.

1.6.1. Prototyping networked embedded systems

The examples listed in Section  1.2 are implicit networks of heterogeneous microcon-
trollers which are either real-world systems I have worked on or models that capture
essential features. These systems were developed and deployed relatively quickly for
research or development purposes. Due to application constraints, heterogeneity in
device platforms and communication approach was at least expedient in all cases (if not
completely necessary), and the adoption of a homogeneous link technology was never a
design possibility.
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I want to underline that these situations all independently developed network-like
features, but did not adopt a standard networking approach such as IP. I think (circum-
stantially) that this is because no one argued for it and it would have been seen as
simply too much overhead to integrate all of the functionality from scratch. But I suspect
that the situation would have been different if there were an off-the-shelf solution that
solved these problems — while my approach may not be energy-optimal or particularly
fast, it represents a potentially-powerful alternative for projects such as these with latent
networking needs which simply cannot make use of presently-available alternatives.

1.6.2. Transitive link sharing

Consider for instance a smart textile system comprising a number of microcontrollers
interconnected in a lattice structure, which perform health monitoring tasks as a distrib-
uted network over a user’s body. Such a concept (“NETS”) is discussed and evaluated
for instance by Wicaksono in [4] — he identifies bandwidth constraints and robustness
concerns due to a shared link architecture as key concerns for developing such systems.

For one, the network connecting the textile could benefit from an IP-based approach, but
more specifically, I observe that it is likely that this network will as a whole use a wireless
link for data exfiltration (NETS uses Bluetooth). Presumably, such a system would prefer
to power only a single radio in the network at a time for the sake of energy conservation
and coordinate some mechanism to send all the sensor data through that one link.
While it’s possible to implement this functionality with an application-specific gateway
approach, transitive connectivity like this is core functionality for a network gateway —
it seems obvious that adopting networking proper is beneficial to solve this problem.

I point at a smart textile system with a wireless link here as a prototypical example (illus-
trated in Figure 4); the generalized extension of the concept is some locally-connected set
of nodes that all want to communicate to the outside world over a shared link. We would
ideally use a general-purpose networking approach in these kinds of cases rather than an
application-specific one.

1.6.3. Machine- and board-area-networks

Oftentimes, electronic devices integrate multiple microcontrollers to control discrete
subsystems. These microcontrollers are typically connected to one another via a serial-
like channel or bus. Several core networking concerns are commonly re-solved in systems
like this, as the system must decide how it is going to do framing, addressing, and provide
gateway or bridge functionality if data must traverse multiple hops. I’m sure you see the
pattern: this is a networking issue, and I suggest that in some cases, it may be useful to
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Figure 4: WiFi connection shared transitively through a lattice network.

actually model communicating microcontrollers on PCBs as “board-area” IP networks as
represented in Figure 5, or larger assemblies of such PCBs as “machine-area” IP networks.

One feature of this idea that I hope to capture is that there may be classes of solutions
that aren’t considered simply because the tools that would make them appear practical
don’t yet exist.

IP-over-I²C

USB

MCU1

MCU2 MCU3

Figure 5: Notional PCB-area IP network.
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1.7. Contributions
This thesis aims to make networking functionality easier to adopt and integrate in micro-
controller-based embedded systems.

The contributions of the thesis are:

• An open-source software library that generically implements and supports described
networking functionality.

• Demonstration systems making use of the library, showcasing key functionalities by
example.

• A set of benchmarks that validate system performance.

1.7.1. System overview

The system I will develop here is a network of point-to-point embedded links speaking
PPP. In the following sections, I will discuss the design of a system of such links
interconnected by packet forwarders implemented in software. These forwarders accept
modular forwarding strategies; presently, they support flooding and bridging behavior
for IP packets. Adaptation of a distance-vector IP routing protocol is discussed, based on
AODV [3].

The system supports I2C, UART, and CAN bus links, as well as USB CDC-ACM (virtual
serial port).

In this work, I use statically-configured node addresses, and the network is treated as
an autonomously managed subnet with edge routers. Edge forwarding behaviors (NAT,
routes to/from other subnets) are manually configured. A simple address compression
scheme is discussed and implemented, targeted at bus links. Name services for the system
are optionally provided by mDNS, which is modified to flood requests through the
network.

1.7.2. Sections

After this introduction, I provide background on relevant prior art (Section 2). I approach
system design by developing a networking approach and software package to support
it (Section 3), then evaluate against a series of benchmarks and provide example demon-
stration systems (Section 4). I provide discussion on the development and implementation
process, and remarks about potential future work (Section 5). The thesis is finally summa-
rized and conclusions are provided (Section 6).
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2. Background
There are many existing projects in networking generally and embedded networking
specifically that merit discussion here.

2.1. Point-to-point networks, switch-based LANs
The networking approach discussed here can be characterized as an arbitrary-topology
LAN with a switch² at each node. Substantial prior art on this concept exists, most of it
from many years ago as networking approaches were less settled than they are today —
nowadays LANs are typically arranged around the assumption or emulation of a shared
broadcast medium (e.g. Ethernet). In Baran’s seminal 1964 article “On Distributed Com-
munication Networks” [5], he performs one of the first characterizations of the benefits
of distributed networks of redundant, point-to-point links, a benefit I aim to capture in
this work. As Yoo points out in [6], Baran’s design relies on each node being a “low-cost,
unmanned computer” — while the computers at the time of Baran’s conceptualization
were certainly different than the microcontrollers I target, the idea remains the same.

Separately, METANET [7] discusses the development of a high-speed packet-switched
network that uses the abstraction of a virtual ring to linearize the network. However, as
[8] indicates and attempts to correct, this design leaves some links unutilized, as they are
not part of the ring. This pattern of link underutilization is a feature I aim to avoid in this
implementation, and is discussed later in Section 3.2.

2.2. Microcontroller networking, WSNs
A wide variety of high-quality microcontroller- and embedded-oriented network stacks
exist under open-source licenses, from standalone implementations such as lwIP [9] and
uIP [10], to more integrated approaches built into Real-Time Operating Systems (RTOSes)
such as Zephyr [11] and RIOT [12]. At the far end of this spectrum are WSN- and IoT-
specialized solutions such as Contiki [13], which is particularly aimed at adoption of the
LR-WPAN stack: IPv6, 802.15.4 radios, RPL-based routing [14], and so on.

All of the listed approaches integrate fully-functional IP stacks, and with the possible
exception of uIP have support for configurable packet-forwarding rules if not full MANET
routing approaches, enabling them to be used in the ways I describe here: for constructing
networks of embedded nodes, potentially across various links and in mobile or usntable
topologies. This may beg the question of how this thesis achieves novelty: it is simply
that (to my knowledge) there is not substantial published work applying these techniques
specifically to wired serial links with a default assumption of point-to-point connections.

²Generically: packet forwarder (see my discussion in Section 3.3).
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The problems for wireless networks are characteristically opposite: almost all links have
limited broadcast semantics, implying a wholly different set of concerns about node
mobility, EMI, and the meaning of link scope and subnet extent.

2.3. IoT fragmentation
The communication landscape in the IoT is substantially fragmented, ironically by exactly
the techniques designed to connect it. There are many ways that IoT networking has
been approached: Thread, WirelessHART, ZigBee, ZWave, 6TiSCH, BLE, and LoRa, to
name just some of the more popular ones up through the network layer. Some of these
approaches do speak IP (typically IPv6), some of them can speak IP in certain situations,
and some of them simply cannot. Some of them are based on 802.15.4 standards, some of
them are not.

Aly et al. recognize this fragmentary trend as a problem, arguing that:

It becomes apparent that most of the challenges brought by IoT are that ones
related to interoperability concerning multiple layers of the end-to-end protocol
stack. [15]

This domain is potentially interesting to our approach as it may be of interest to connect
these disparate protocols; it is worth considering approaches undertaken previously to
make these different links compatible. Several implementations have been undertaken;
Web of Things [16], for instance, adopts a standard message format communicated over
HTTP. Matter [17] follows this trend of a standardized message format and data model,
but adopts IPv6 as the ubiquitous networking layer. However, neither of these approaches
solves the fundamental problem we’re aiming at: getting devices on the network when
they do not have supported networking peripherals. To my knowledge, no such approach
has been taken, so this path appears to be a non-starter.

2.4. Named data networking approaches at the edge
Named data networking [18] and its cousins (or aliases) in the content-centric networking
sphere form a family of techniques organized not around networks of hosts (i.e. distinct
computing machines and devices identified by addresses), but rather networks of content
identified by names; this turns the network’s role into one of finding routes for identified
information to be delivered to requesters of that information.
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The model of browsing the web by URL can be usefully compared: web pages are content
identified by a structured name (the URL), and the browser’s job is to figure out how
to deliver you the data by the name. The difference is that under current networking
paradigms this functionality is performed at the application layer; a named data approach
would have URLs actually identified with the content being requested, rather than dis-
patched through several layers of indirection — a DNS lookup leading to a TLS connection
which connects you to an HTTP server which is really acting as a database frontend.
NDN would have it that requesting data by name causes the network to directly deliver
you an end-to-end encrypted payload as its core functionality, without all the fuss in the
middle.

I bring NDN into the conversation due to the prevalence of related approaches at the
edge. The simplest connection to make is to the message broker: a service that provides
publish/subscribe semantics by structured topic: this looks a lot like named data, even if
it’s done at the application layer. Subscribing to a topic is essentially a request for some
(future) data by its name.

This brings me to Zenoh [19], a distributed, transtively-connectable pub/sub protocol,
which supports multiple modes of operation, including as a message broker, dumb client,
and router (forwarder for other brokers). It’s interesting to consider here because it
doesn’t actually specify a particular lower-layer: it runs on anything that can serve as
a link (providing byte-serial communication), just as we depend upon PPP to do, and it
provides transitive connecitivity. Zenoh can run over serial links, TCP, TLS, UDP: you
name it, and is available on both desktop-class platforms and microcontrollers (through
zenoh-pico ). The key thing it doesn’t do, which I’m concerned with in this work, is
provide IP services and compatible API to support application portability: Zenoh appli-
cations are built with Zenoh as the target platform.

BACKGROUND 26

https://github.com/eclipse-zenoh/zenoh-pico


3. System Design
To briefly re-motivate the design concept I will flesh out below: I suggested in Section 1
that it would be beneficial to be able to build networks of embedded devices over point-to-
point links. Networks of this type in general need to support a mechanism whereby traffic
can be forwarded by intermediate nodes to reach a destination; this section develops a
generic software library package that can abstract over different forwarding strategies
and is suitable to run on an embedded microcontroller.

In order to motivate the design of this software, I specify motivating goals for the system
and discuss considerations for organizing the networks that will ultimately be created. I
then discuss the software design itself, and provide notes on a few extensions to function-
ality that can further enhance the system.

3.1. Goals and anticipated usage
The networking system I lay out here is designed for operation on small devices
(prototypically microcontrollers), whose application needs depend upon or benefit from
network communication. I assume that these nodes have some mechanism for bidirec-
tional communication, but nothing further than that — no specialized network hardware
is required.

The kinds of network activity I aim to support are general-purpose, i.e. not dominated by
requirements for high throughput, deterministic latency, or extreme energy conservation.
Data payloads I anticipate include sensor readings, asynchronous control plane updates,
and user interaction traffic (including loading web pages over HTTP and simple web API
interaction), at an overall rate of perhaps several hundred packets per second across any
particular link (dependent on link speed), with graceful degradation via dropped packets
as links become saturated.

As a usage paradigm, I think of IoT networks deployed in homes and offices, informational
industrial monitoring devices such as low-rate cameras and sensors, and other moderate-
data-rate embedded sensor systems. The approach should scale to systems of hundreds if
not thousands of nodes as system memory and forwarding tables allow.

I aim for the approach to make use of existing standards and approaches where possible:
one of the central ideas behind this project is that nearly the entire thing can be built
off-the-shelf in order to enjoy broad compatibility with existing network services and
applications.

Non-goals include design sacrifices made in the name of optimizing for specialized net-
work workloads, such as high throughput for interactive video playback, hard-realtime
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latency bounds for control systems, or extreme energy optimization for long-deployed
battery-powered systems. To the extent that these use-cases function naturally, all the
better — but the most essential function of the system is to get general networking
functionality onto devices that can’t access it at all; this trumps optimization concerns for
any particular kind of traffic.

That being said, I think it is useful to specify network performance targets in order to
provide some anchor to guide design, but they are difficult to specify generically in a
system like this, as throughput metrics are necessarily relative to link capabilities: note
that a slow 9600 baud UART can transport at most 60 minimal IPv4 headers or 30 minimal
IPv6 headers in a second, where by contrast a high-speed 40MHz SPI link could in theory
deliver up to 144k 256-byte IPv4 packets per second. All the same, it is useful to provide
a goal as a meter for success: I aim for a mean of 80% of nominal physical line rate in full
network tests when links are saturated.

3.2. Network organization
For broad compatibility with the world’s networking systems, our network is an IP
network. Each node in the network has an IP address, and the network-layer traffic
is comprised of IP packets. Nodes support both IPv4 (for backwards compatibility and
smaller addresses and headers) and IPv6 (for better features and future-proofing): I use
“IP” to refer to both protocols simultaneously except where distinctions are relevant.

Because our approach aims to support devices with minimal communication equipment
such as UART links, we choose a point-to-point, multihop network representation so that
we can treat links uniformly. In order to move data through the network, each node must
therefore be a packet forwarder — it must be capable of making decisions about to which
point-to-point link(s) it should next forward a packet not bound for its own address.
Supported packet forwarding approaches are discussed below in Section 3.3.

Note that this network representation is amenable to multipoint links under the abstrac-
tion of a collection of pairwise point-to-point links, with broadcasts filtered by address at
each receiver. This concept is illustrated in Figure 6.

The point-to-point link implementation is flexible in principle, as long as it can carry IP.
As far as the network is concerned, the link layer can remain unspecified. However, for
the benefits discussed in Section 3.2.2, most links in the system use PPP in reality.

3.2.1. Addressing and subnetting

Our network must make some choices about both addressing and determining a subnet
border. That is, in general it is assumed that our network may communicate with network
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Figure 6: Multipoint link treated as equivalent to a collection of point-to-point links.

nodes that are “off-subnet” — not using our same point-to-point networking approach;
we must therefore decide what happens to traffic at the border between our system and
foreign ones, and how we should address our own nodes to maintain compatibility.

A situation we might encounter is a device that has both an in-network serial port and
an Ethernet port, as in Figure 7. The serial port communicates with our system, but the
Ethernet port is connected to a preexisting and separately-managed home LAN with all
the usual trappings: we’ll treat it as IPv4 for now, so let’s say it’s running DHCP, has
a default gateway router connecting it to the pulic internet, it has its own own subnet
prefix, and there are a number of active peer hosts in the subnet.

Ideally, our system would bidirectionally interoperate with this existing LAN, but the
question that faces us is how to achieve that; what do we do on this border node in terms
of addressing and packet forwarding?

Figure 7: Device on the border between point-to-point network and foreign Ethernet LAN.
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3.2.1.1. Challenges for a transparent border

One (strawman) approach might be to proactively detect that we border the foreign LAN
and adopt its network configuration — we could have our border node forward DHCP
requests into the Ethernet LAN for all nodes in our system, and run proxy ARP (ND)
or synthesize MAC addresses for them so they appeared for all intents and purposes to
be part of the Ethernet LAN. We would adopt its network prefix and “pretend” to be a
normal, well-behaved part of it.

This approach has several downsides: it doesn’t deal well with multiple simultaneous
borders to multiple (possibly-but-not-necessarily-distinct) foreign LANs, it specializes
a significant amount of behavior to Ethernet in particular (implying a requirement for
repetitive and ungeneralizable similar implementations for other Layer 2s), it relies on
there being enough addresses available in the Ethernet LAN for us (which in general
we don’t know), and it makes bringup of our network dependent on detection and
propagation of this external state — what happens in the case of a network partition
(or reconnection)? Presumably, some part of our network comes up assuming that there
are no network borders, and so self-configures? Do the self-configured addresses drop
once a connection reestablishes? The lack of clear answers to these questions for this
“transparent border” approach, predicated on learning external network configurations,
hence seems like a total non-starter, with the notable exception of a single unique benefit:
it makes us look like part of the same subnet to devices on the Ethernet LAN, meaning
that they will have no problem initiating communication into our system.

3.2.1.2. Subnet with border router

Another (mostly preferable) option is to treat our own network as a coherent, self-
managed subnet and have devices on the border act as gateway routers between us and
foreign LANs. However, this approach runs up against the singular benefit of the last:
how do the foreign LAN’s hosts actually send traffic into our network? We could install
routes in each of its hosts, but this doesn’t scale well; conventionally, this would be done
by instead running a routing protocol to instead automatically install our routes on the
foreign LAN’s router, which could then handle forwarding traffic to our border nodes.
However, support for internal routing protocols varies and authorization may be required
in order to update network configuration — in practice, this approach will be hard to
operationalize in a manner compatible with automatic bootstrap.

As an aside, it seems that it could solve this problem if IPv6 ND [20] separated the
concerns of network bootstrap (which requires determining a default router, configuring
the network prefix, providing an address-assignment mechanism), and the advertisement
of a node as a router which can provide routes for a particular private subnet (but is
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not a default gateway and does not support bootstrap functionality). Interior routing
protocols are the common mechanism for propagating this information, but it might
provide a drastically more flexible model for internet connectivity if these semantics were
an essential part of the IP model.

We can always fall back to SNAT on the borders, but this creates problems: ingress from
foreign subnets becomes impossible in the general case. Specific DNAT approaches (e.g.
port forwards and DMZ hosts) can of course be configured, but these require manual
intervention, and we’re hoping to capture the full benefits of IP, which suggest that the
foreign LAN should be able to have full visibility and bidirectional communication with
all hosts into our subnet.

For the purposes of this thesis, I leave this problem unresolved, as my evaluation of
the point-to-point networking approach does not depend upon having a mechanism like
this fully working; I instead statically configure the forwarding rules at the edges. These
problems are not specific to my approach, but rather a core challenge of working with IP
networks. The fact that it specifically makes sense for me to hang a separate subnet off
of an existing LAN simply brings this issue to the forefront.

3.2.2. PPP

PPP, specified in RFC 1661 [21], is a link-layer protocol capable of of carrying network
traffic across a variety of underlying physical media, such as serial ports connecting two
devices. The primary benefits of PPP as I see them are:

• Traffic multiplexing on the link. A PPP link concurrently carries link control traffic,
network layer control traffic, and network data traffic by discriminating on a per-frame
16-bit protocol type field. This enables a single PPP link to carry many different traffic
types simultaneously over the same physical channel (including e.g. IPv4, IPv6).

• A generic mechanism for negotiating per-protocol, content-agnostic configuration
parameters, conventionally assuming a minimal default parameter set that will produce
a functioning link, and allowing peers to opt-in to upgrades that they support.

The PPP RFC [21] does not specify a framing, checksumming or error-correction
approach, leaving these concerns open to specialization for the lower layer in use on a
given link. Several approaches have been separately specified for different lower layers,
including PPP in HDLC-like framing [22], PPP over Ethernet [23] (PPPoE), and PPP
over Asynchronous Transfer Mode [24] (PPPoA). I make use of the HDLC-like framing
approach for byte-serial connections such as UARTs and TCP overlays, and adapt new
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framing variants for lower layers such as I2C, which already have a framing mechanism
at the physical layer.

I pursue PPP as the link layer of choice³ in this system specifically because its config-
uration negotiation mechanism provides a useful way to enable opt-in support for
experimental features explored in this thesis such as link-specific header compression
schemes and selection of forwarding approach, while still enabling interoperation with
existing PPP implementations such as pppd  [27], which would not have support for the
experimental options (causing them to automatically be rejected as unknown, turning
them off).

This feature of PPP also seemed useful for automatic bootstrapping and implicit subnet
boundary detection, whereby network nodes could use the experimental configuration
options as discriminants, for instance to enable certain nodes to act as border routers
and enable NAT for PPP peers detected to be “out of subnet”. This idea is illustrated in
Figure 8. These features were not ultimately implemented as part of the thesis, but remain
interesting possibilities for future work.

3.3. Forwarding approaches
I consider packet forwarding to refer generically to the process of a device ingesting a
packet not bound for its own address and making a decision about what to do with it.
This definition is somewhat overloaded for want of a better catch-all: by “packet” I mean

Figure 8: Imagined mechanism for automatic subnet discrimination.

³As opposed to e.g. SLIP [25] or COBS [26], both of which are simpler to implement.
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interchangeably a network packet or a link layer frame, and by “address” I mean the
relevant layer’s address, not just an IP address. This is unconventional; these approaches
are typically referred to as “switching” at the link layer (because packets are “switched”
between links, historically in a very literal electrical sense — think telephones) and
generically “packet forwarding” at the network layer, but I intentionally unify them here
because they perform the same essential function: a generic forwarder takes in some
packet on an interface (here typically a PPP link, but generally also including Ethernet,
WiFi, etc.), compares header metadata (primarily network address) against some internal
state to determine an appropriate action, then sends the packet back out on some new set
of interfaces in order to move it closer to its destination.

I make this unification because point-to-point links have no meaningful notion of address:
there is only the local side and the remote side. All forwarding in our system therefore
happens at the network layer and in terms of network-layer addresses. That we know
a priori that the network is constructed this way fundamentally changes the problem
framing compared to typical LANs, which are constructed on the assumption of a shared
broadcast domain, such as what Ethernet emulates. This difference in construction means
that your home router and computer must perform ARP lookups to resolve IP addresses to
link-layer addresses, but after doing so, can assume that Ethernet frames will be faithfully
delivered to their destination: devices can pretend that they are sending link frames on
a physically contiguous link that all devices in the LAN can see. This is not actually true
anymore — modern Ethernet networks are point-to-point, but they provide the illusion
of a shared broadcast domain through intelligent use of transparent bridging.

This is all to point out that because our network construction is explicitly one composed
of point-to-point links, the problem of packet forwarding is one that we must internalize
and solve in order for our network to function, in a sense that is atypical for the network
layer in a LAN. As a result, many of the techniques typically relegated to the link layer,
such as flooding and transparent bridging, are relevant candidates for our network-layer
packet forwarder implementation, and are discussed below.

3.3.1. Flooding / Hubs

Perhaps the simplest approach to packet forwarding, flooding forwarders (hubs) broad-
cast every packet they receive to all other interfaces. This ensures that all nodes in a
connected segment of a network graph see every packet (and can locally filter for their
own address), but comes at the cost of maximal link utilization and congestion, as every
packet entering the network traverses every link at least once.⁴

⁴With the exception of cases where the destination node is at an hourglass point in the network graph.
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Special care must be taken in flooded networks not to connect devices in loops, or else the
network will experience so-called “broadcast storm” effects, as packets will be forwarded
around the loops forever, or until hop limits (a.k.a. TTL) are exhausted. Storms can be
avoided by supplying a protocol-level mechanism to suppress packet retransmission in
the forwarding implementation (e.g. by providing unique ids to each message, depending
on small TTLs, or rejecting duplicates within a specified time window), or by simply
passing this burden onto the network user to ensure that the network topology is tree-
like / cycle-free.

interstice  provides a flood forwarder as a dead-simple forwarding strategy implemen-
tation that can be used for debugging, in simple network deployments, or as an
optimization for highly memory-constrained devices that do not have room to store
forwarding tables.

3.3.2. Transparent bridging

Transparent bridging is a forwarding approach that can from one perspective be thought
of as an augmented hub that remembers what interface ID last received a packet from
a given address. When it needs to make a forwarding decision, it consults the cache⁵
retaining this mapping to determine where the incoming packet should be sent. Unicast
packets with a “remembered” associated interface ID are sent back on that interface, on
the assumption that it is the best next-hop through the network back to the original
source. When no interface ID is in the cache (or if the packet is a broadcast or multicast)
the bridge falls back to flooding behavior. This process is illustrated in Figure 9.

This approach enables passive, on-demand learning of the topology of small-to-medium
sized networks with low implementation complexity but good average-case performance
in typical network conditions. In particular, for a cycle-free network, there is exactly one
route between any two devices, which any bridges on the route will discover as long as
there is bidirectional traffic between them; as this route is unique by the tree-like structure
of the network, it is also necessarily optimal.

⁵These caches are conventionally referred to as tables, as a typical implementation would use a contigu-
ous chunk of memory (or dedicated accelerated hardware storage such as CAM [28]) to store and query
the address map. However, in a transparent bridge, the table entries must be considered opportunistic
optimizations over packet broadcast, as, if traffic is unidirectional, a bridge may never actually learn the
forwarding rule for a given address, and yet still must maintain correct network function. My transparent
bridge implementation explicitly acknowledges this and intentionally selects an LRU cache as the data
structure responsible for storing the forwarding table. This also provides the benefit of giving an explicit,
predictable stance on memory exhaustion behavior: the cache simply drops the least-recently used entry,
meaning that the forwarder will begin broadcasting to reach the dropped address (until another packet
is received).
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Figure 9: Transparent bridges passively learning forwarding rules.

These properties make transparent bridging an attractive option for this thesis, and
indeed, it is the standard selected approach in my evaluations due to its relative imple-
mentation and debugging simplicity.

However, the requirement that the network be cycle-free collides with our goals stated
in Section 3.1: ideally, we would support a highly-connected mesh topology, but this is
impossible under transparent bridging, as cycles in the network graph cause broadcast
storms, and the possibility of packets from a single source arriving on different interfaces
could cause thrashing effects in the forwarding table. Conventionally, the solution to this
problem is to proactively learn the network topology and selectively disable links that
create loops (i.e. turn the mesh back into a tree), but doing this eliminates the robustness
benefits of redundant network paths and tends to concentrate traffic in central nodes. A
full solution to stated design goals cannot rely on transparent bridging.

3.3.3. Routing

Routing approaches actively learn information about network topology and link quality,
which is propagated between participating nodes (termed routers). They use this infor-
mation to determine valid (and ideally cost-optimal) paths through the network (“routes”),
which are used to make forwarding decisions. Routing approaches are in general tolerant
of arbitrary network topologies, unlike bridges or hubs, because the router actively
selects a path using an approach that prefers to minimize cost, which naturally excludes
cyclicity.⁶

A wide variety of routing protocols exist for different applications — common approaches
used for Internet routing include OSPF [29], BGP [30], and RIP [31]. These approaches

⁶Transient cycles are in many cases temporarily possible in routing approaches (typically when nodes
are out of sync with respect to the net topology), but they are typically excluded on network convergence.
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are unfortunately relatively heavy in implementation and not terribly well-suited to
our problem domain, as they optimize for providing routes between subnets, where our
issue is primarily finding routes between hosts. However, development in Mobile Ad-hoc
Networks (MANETs) has driven the standardization of routing protocols that consider
ad-hoc networks of devices that share many of our constraints. Here we consider Ad-hoc
On-Demand Distance Vector Routing (AODV) [3] as a specimen that may suit our needs.

AODV learns routing information both passively and actively: when a forwarding deci-
sion must be made, if there is no route for the destination address (i.e. the forwarder
doesn’t know what interface to forward the packet to), the router broadcasts a “Route
Request” (RREQ) into the network containing its address and the destination address. The
fact that the transmission is a broadcast means that if the destination host is in the net-
work, it will hear it and subsequently respond (via unicast) with a “Route Reply” (RREP)
message. Figure 10 illustrates this process. Unicasting is made possible because devices
which forwarded the original RREQ cache the interface ID from which they heard it, so
the chain can be traversed backwards. When the RREQ originator receives the RREP, it
now knows the best next-hop to reach the destination (the one it received the RREP from),
i.e. it has learned the route. Furthermore, all devices on the route also necessarily hear
the RREP, and have therefore learned their own routes to both the destination and the
originator (as they know the next-hop in both directions).

Observe that this process will tend to produce a “good” route because the network itself
implicitly computes the path cost by propagating the RREQ — the path through the

Figure 10: Basic AODV operation. Node 1 doesn’t know the path to node 5, and so broadcasts
a REQ message. The network propagates it until it reaches node 5, which responds with a
unicast REP back along the same path. Intervening nodes learn forwarding rules in both

directions.
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network that delivers the message first is the one that the destination will use to respond,
even if there are actually multiple possible paths, and the RREP will naturally follow the
same path back to the RREQ originator. AODV has several other beneficial properties,
including relative simplicity of implementation, convergence guarantees, and very low
average-case network traffic — it enjoys substantial popularity in the MANET space, being
the approach used to route ZigBee, for instance.

For these reasons, I am motivated to adopt it as a routing packet forwarder for
interstice ; however, there is presently no embedded-compatible AODV implementa-
tion in Rust (the programming language of choice for this thesis) that I am aware of.
For expediency, I instead consider a substantially cut-down, customized design of AODV,
which could be specialized to operate over PPP and concerns itself mostly with happy
path operation. As transparent bridging is enough to demonstrate network function in
most cases, the goal would be to demonstrate that a routed forwarding can be made to
work, though a complete, RFC-accurate implementation of AODV in Rust would also be
a great candidate for future work.

I did not implement this approach during the thesis, but to explore the concept, my
notional, modified version of AODV (uncreatively titled raodv : “Rust AODV”) models
it as a natural extension of a transparent bridging approach. The insight of transparent
bridging is essentially the same as that of AODV: broadcasts tell us information about
the best paths through the network, information which we can retain as an optimization
to avoid the need to broadcast in the future. AODV’s enhancements are that it actively
requests that the destination send a reply and includes mechanisms to suppress broadcast
storms.

In my system, it seems that the most straightforward way to exchange raodv  routing
traffic would be to simply send it over dedicated PPP network data channels. However, we
can do one better: having to wait for a routing handshake to occur somewhat complicates
the packet forwarder implementation: instead, what if we just acted like a transparent
bridge and broadcast our network packet as normal, but piggybacked metadata indicating
that this packet is also an RREQ? This could cost a substantial amount of unnecessary
link budget in the broadcast (duplication) of the network data, but we should expect that
cost to be amortized acceptably over the lifetime of the route. This could create broadcast
storms, so let’s also attach a unique ID that devices will cache, enabling them to identify
and drop duplicates.

And if we assume broadcasts will take a good path, why unicast backwards? Instead,
always broadcast an RREP when you get an RREQ.
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3.4. Software design
The software implementing the networking approach is implemented in several Rust
libraries (an overview of the source code is available in Appendix A). The bulk of the func-
tionality lies in a library called interstice , which provides a generic packet forwarding
abstraction and the modular packet forwarder strategies discussed in Section 3.3.

This generic forwarder concept is based on the observation discussed in Section  3.3
that packet forwarding can be modeled (Figure 11) as unspecialized to any particular
networking approach (or even layer): ingest a packet, compare its address with some
internal state, then specify where it should be sent back out.

The interstice  implementation acknowledges this and provides a general, flexible
framework for specifying packet forwarding behavior in a way that is entirely decoupled
from the network stack and allows reprogramming or updating during network opera-
tions.

The forwarding strategies specified above (hub, transparent bridge, and suggested raodv
router) can therefore be treated as modules that can be ‘plugged in’ (Figure 12) to an
interstice  forwarder without regard for the attached links, buffering configuration, or
various other parameters of the generic forwarder. This modularity greatly eased devel-
opment and makes the approach relatively portable.

ingest & store

parse metadata

decide 
 forwarded interfaces

transmit & dequeue

Figure 11: Interstice generic forwarder abstraction.
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Figure 12: Interstice forwarder modularity.

3.4.1. Generic addressing

interstice  uses a generic address abstraction based on Rust language interfaces (traits),
which present a minimal set of requirements for types to function as addresses. Addresses
must provide:

• An opaque byte-string representation.
• Functionality to check if the packet is unicast, broadcast, or multicast.

This minimal interface has proven sufficient to enable generic operation of interstice
packet forwarders, which are parametric over this abstracted address type. The byte-
string representation provides a mechanism for opaque comparison and storage in
forwarding tables, while the unicast/broadcast/multicast semantics are required to resolve
forwarding behavior in general.

Concretely, this generic address interface is implemented for IPv4, IPv6, and Ethernet
addresses — in principle, the forwarder can function with addresses of any of these types.
This set of supported address types can be extended by the user if desired.

3.4.2. Packet representation

Packets in the interstice  system are also abstracted by a language trait. They must
support extraction of source address, destination address, and a reference to payload
data, as well as a mechanism to check and decrement a hop counter (if present). This
functionality is implemented for IPv4, IPv6, and Ethernet frames.

This abstract packet representation has similarly proven sufficient for generic forwarding.
Considering the IPv4 header, most metadata other than destination address and TTL
are irrelevant to the forwarder; the network-layer semantics (e.g. fragmentation and
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Figure 13: Generic network forwarder can perform packet forwarding without an attached
network stack.

reassembly) are implemented by the endpoint IP stacks. Notable exceptions that we might
choose to include in the future are QoS via DCSP (which is best-effort anyway, but could
be useful to integrate as part of the generic packet representation) and source-routing
options, which I simply don’t support.

3.4.3. Network stack decoupling

Note that there is nothing in this system description that couples the interstice  imple-
mentation to a network stack — the forwarder can run completely on its own (Figure 13).

This observation led to an organizational shift in connection design for interstice : IP
stacks are treated as leaf connections (Figure 14) in the overall forwarding topology, and
are assumed to have no intrinsic forwarding capabilities — the point-to-point nature of
the networking approach is enabled by the forwarders only, which are the only nodes
that can attach multiple interfaces. IP stacks will typically not see a PPP link directly —
instead, they attach to the forwarders over an in-memory “null modem” link. This leads
to the conclusion that packet forwarders are unaddressed entities: the IP stacks themselves
are the only network members that actually have addresses.

This decoupled approach is beneficial because it disentangles the concerns of complete
interpretation of IP packets (including fragmentation/reassembly, option parsing and
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Figure 14:  IP stacks as leaf nodes in an interstice  network.

handling, and transport-layer machinery) from the minimal information needed to
forward them through the network (destination address), which can simplify implemen-
tation. It also increases implementation flexibility (Figure 15), as it eliminates any strict
correspondence between forwarder and network stack: conventionally, a network host
will have one forwarder (to which all its external interfaces are attached) and one IP stack,
but if the host knows that it has exactly one communication interface, it can choose not to
run the forwarder at all and instead attach the IP stack directly to the external interface.
Or, it can run multiple independent forwarders to support approaches comparable to
VLAN. Or if it doesn’t need or can’t support IP services, but nonetheless wishes to provide
transitive connectivity to its peers, it can run only a single forwarder to bridge its external
interfaces — this will have a lower cost in system resources through the omission of the
IP stack.

There are of course cases where we want to establish a firm one-to-one relationship
between an IP stack and a packet forwarder, e.g. if the IP stack is exchanging information
about network topology using a routing protocol and needs to communicate updates to
the forwarder. In this case, the routing client will simply acquire a handle to the forwarder
and mutate it to record route updates. The difference compared to an integrated approach
is simply that this behavior is opt-in rather than assumed everywhere.

However, it must be noted that routing protocols which identify forwarding nodes by IP
address will not work in our system, as our forwarders do not have addresses. Distance-
vector based approaches such as AODV [3] are commonly formulated in terms of
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Figure 15:  Separation of packet forwarder from network stack enables various connection
topologies.

“neighbors” (which are identified by outgoing interface), and so will be more amenable
to adaptation, but link-state approaches will of course work as well, so long as forwarder
identity can be separated from IP address.

3.5. Lower layers
To demonstrate the flexibility and general applicability of my approach, I develop lower-
layer adapters that can interface with interstice  over various communication channels
commonly available in embedded systems. Implementation approaches and considera-
tions are detailed here; performance evaluation is performed and discussed in Section 4.

3.5.1. UART

UART is the paradigmatic default physical layer used in this work, as it is a simple point-
to-point serial link that is ubiquitous in embedded systems. It is straightforwardly used
to carry PPP traffic using PPPoS [22] framing. UARTs are asynchronous duplex, and have
characteristic speed limitations due to the lack of a dedicated clock line, though speeds of
on the order of 1Mbps are achievable on links with limited length and minimal exposure
to electrical noise.
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A notable mention for this category is USB CDC-ACM, a USB device class designed as
a generic, virtual serial port. I commonly used PPP over CDC-ACM as the last link to
connect my networks to Linux computers running pppd  [27].

3.5.2. I2C
I2C is a very common embedded communication bus sporting 7- or 11-bit addressing,
moderate data rates (100kbps is standard, up to 1Mbps), and a master-slave architecture.
In the current implementation, the master node is selected statically at compile-time, but
in principle it could be possible to negotiate this at runtime, improving flexibility and
bootstrap capabilities.

Since I2C indicates data length intrinsically, we could choose to drop the framing specified
in [22] and instead assume that each transaction contains at most a single frame. But for
the sake of sharing code and potentially improving throughput, I retain the HDLC-like
framing in my approach with the addition of a one-byte per-transaction header.

3.5.2.1. Length indicator

The header byte simply indicates 𝑛: the number of data the device has buffered for trans-
mission as of the start of the message, with 𝑛 = 255 indicating that at least 255 bytes are
ready. The remote end only treats the first 𝑛 bytes of the message (after the length byte)
as valid, ingesting them into its HDLC-like deframer (the rest of the packet may contain
arbitrary values). If the bus master sees 𝑛 = 255 or 𝑛 > len (the actual transaction length),
it knows the slave has more data and should try another transaction. 𝑛 = 0 indicates that
the remote is not sending any data, which may be used by the slave if it has nothing to
send. These semantics imply that an overall read length of 256 bytes (1 header byte + 255
data bytes) is the maximum that should be used.

3.5.2.2. Polling

A limitation of master-slave bus architectures is that slaves cannot initiate communica-
tion. While it’s possible to use an additional conductor (shared, or one-per-slave) to
indicate readiness in the slave → master direction, I don’t do that here, and instead adopt
a periodic polling approach. After a period of inactivity, the bus master polls each of the
slaves for data availability in a round-robin manner.

3.5.2.3. Role-switching approaches

I2C supports multimaster operation of the bus through collision detection mechanisms,
i.e. multiple bus members can concurrently hold a master role. This suggests that I2C
could potentially act as a full multipoint link, but hardware limitations presently make
this difficult to achieve, as peer masters cannot typically listen on the bus and selectively
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switch their role to act as a slave for transmissions destined for their address. Future work
might consider attempting to emulate this functionality by actively switching peripheral
modes and only occupying the master role while actively transmitting.

3.5.3. CAN

CAN bus is an automotive communication bus based on a differentially-signaled twisted-
wire pair. Bus semantics are broadcast, i.e. all nodes hear and may choose to receive all
messages. The protocol has many variants, but standard CAN (2.0A) uses 11-bit message
identifiers. Notably, identifiers are not strictly constrained to addressing semantics, and
could instead be used to encode commands or message types. The bus has arbitration
mechanisms that ensure that messages with lower identifier values take priority over
those with higher values.

In my system, I stipulate that message IDs have addressing semantics; i.e. each node
adopts a single ID that it listens for exclusively. At the moment, the set of IDs on
testnet CAN links are hard-coded, so discovery and automatic address assignment are
not performed, but we could in the future reserve a specific message ID on which on-link
devices might periodically announce their presence, which joining devices could monitor
in order to determine and claim an unused ID. The current implementation runs basic PPP
between each pair of devices on the link with no CAN-specific optimizations. Clearly this
approach is inefficient, as it does not take advantage of the bus as a shared medium; the
goal of the implementation is primarily to showcase the possibility of using this alternate
medium to carry IP.

3.6. Name services
interstice  provides mDNS [32] support: each node running the software can provide
a name for itself, which defaults to interstice.local  and can be overridden by an
environment variable. mDNS resolution requests are forwarded through the network and
successfully resolve transitively connected nodes — this is nonstandard behavior, as the
RFC specifies that lookups should be link-local. Clearly, given that our links are point-
to-point, this would not make sense for our network paradigm, hence the forwarding
behavior.

3.7. IP header compression
Header compression is a family of techniques that reduce the amount of information that
needs to be transmitted over a given link, typically by inspecting network- and transport-
layer packet headers and eliding repetitious information that can be reconstructed by the
receiver from context.
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This is attractive because it can lead to savings in link budget and hence improved
network performance; on a relatively slow medium like a 115200 baud serial port, we can
deduce that an upper bound on packet rate (if we sent only empty packets and framing
was free) is 115200 bps ÷ 20 bytes of IPv4 header = 720 packets/s; if we could omit
the 8 bytes of addressing information, that bound would increase to 1200 packets/s, an
improvement of 66%. Reality will only approach these numbers if the packets are consis-
tently small, but as [33] observes, some network traffic such as interactive user input
does produce a stream of latency-sensitive, characteristically-small TCP/IP packets, and
regardless we expect the technique to be beneficial overall, even in cases where those
benefits might be comparatively marginal.

3.7.1. Stateful approaches

Van Jacobson compression [33] implements header compression for TCP/IP by observing
that information commonly repeats over time on a given TCP connection: caching the
last sent or received packet on a given connection enables us to compare the delta to the
next packet and compute a custom header representation that only transmits the changed
fields. As the receiver also caches the last packet, it is able to synthesize the original
network-layer header before it is handed off to the IP stack. Similar approaches known
as IP Header Compression (IPHC [34]) and subsequently Robust Header Compression
(ROHC, [35]) generalize the approach to other transport layers, notably for our case
including UDP.

While I began an initial implementation of VJ compression as part of the thesis (as there is
no existing embedded-compatible implementation in Rust, to my knowledge), implemen-
tation proved too involved to complete here, so I do not present a stateful compression
approach as part of this work. Future work may complete this partial implementation.

3.7.2. Address compression

Address compression is based on an observation of “spatial” data repetition: it is not
uncommon for there to exist a mapping from link layer address (e.g. MAC address) to
network address, both of which will conventionally appear physically within the same
link-layer frame. In principle, if the address mapping is stipulated to be one-to-one and
known a priori (such as is possible in IPv6′s Stateless Address Autoconfiguration (SLAAC)
[36]), the network-layer addresses can be omitted or partially truncated (see Figure 16).
This technique is optionally employed in 802.15.4 networks, for instance, as specified
in [37].

Notably, address compression can only be applied in situations where a lower-layer
address exists, e.g. it is not usable with PPP over UART or RS-232. This makes buses such
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Figure 16: Address compression using link-layer addresses.

as I2C and CAN interesting as candidates for applying this technique, as they do neces-
sarily make use of addresses which could in principle be used to reconstruct a network
level address.

I provide an bus-oriented experimental implementation of address compression in my
modifications to ppproto  (Rust PPP implementation). This change compresses the desti-
nation address (normally 4 bytes in IPv4) by optionally replacing it with a single zero
octet in the same location in the IPv4 header. If present, this zero (which should never
appear in the first octet for a standards-compliant address being transmitted through
the network) indicates that the following three bytes of the address were elided, and the
receiver should fill in its own address, because the sender is asserting that the packet
was unicast to it on-link, and the sender knows the destination’s address. This approach
requires that the sender have this knowledge, which is achievable in a number of ways.
In my implementation, I simply check for a configurable-length prefix match, assuming
that the network will be organized such that the shared bus link has its own exclusive
prefix.

Compression for source addresses could be performed in almost exactly the same way,
but would require that the bus provide a source address (not available for CAN) and a
mapping from that bus address into a network address. Future work could implement this
approach to improve compression for I2C links.

3.8. Design summary
In this section, I discussed considerations impacting network and software design and
made a number of conclusions.

First, I discussed how the network system should be organized with respect to external
networks. I concluded that it would be preferable to treat our network as its own self-
contained, self-managed system, rather than trying to integrate addressing and routing
with any external LANs it might border.
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I then considered the benefits of PPP as a link layer, concluding that it would be useful for
traffic multiplexing and per-link configuration exchange, easing the adoption of exper-
imental configuration options. I suggested that the configuration mechanism might be
used to automatically detect the boundaries of our system.

Subsequently, I discussed how the network will forward packets. I suggested that differ-
ent applications scenarios may call for different approaches and so adopted a modular
forwarder design, in which the forwarding strategy could be substituted based on design
requirements. I adopted a flooding (hub) forwarder and a transparent bridge, and also
discussed the design of a routed approach based on AODV.

Next, I considered the design of the forwarder software. For reasons discussed previously, I
adopted a modular design, in which the forwarding strategy could be substituted between
various implementations. In order to improve genericity, I abstracted both the address
and packet representations used by the software to the minimal interface required for
packet forwarding.

To improve flexibility of deployment on constrained devices, I separated the packet
forwarder from the IP stack, enabling it to be deployed on its own. I discuss that it is
possible to remove IP addresses entirely from the forwarder, and instead relocate them to
the IP stacks only, as network endpoints.

I discuss implementation concerns for the lower layer serial links used in this thesis:
UART (+ similarly, USB CDC-ACM), I2C, and CAN. Notable items include that I2C slave
→ master transmissions include an initial length byte indicating the amount of data the
slave has remaining, I2C masters poll periodically, and CAN uses message ID as a node ID.

Additionally, mDNS was adopted for name service, slightly modified for our network to
propagate request multicasts beyond link boundaries.

I also considered header compression approaches, and implemented a simple IP address
compression scheme for CAN bus. It makes use of the fact that the zero byte never occurs
in the first position of a well-formed transmitted IP address.
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4. Evaluation
This project’s primary evaluations were benchmarking for performance in several metrics
and feasibility and qualitative flexibility demonstration through the implementation of
integrated systems. These evaluations are intended to establish the contours of the
system’s performance (lower- and upper-bounds, suggestive initial trends) under a vari-
ety of conditions.

The aim of these evaluations is to validate that this networking approach and the software
supporting it meet reasonable standards of performance, which would make their use
generally viable and applicable under the design criteria explored in Section 3.

Where possible, the following tests are performed on hardware networks of microcon-
trollers across electrical links. Some tests, however, were conducted in simulation on
PCs, to establish bounding performance trends that were practically prohibitive to realize
physically due to scale.

4.1. Testnet configurations
Networks of embedded microcontrollers (Figure 17, Figure 18, Figure 19) were assembled
to evaluate the function and performance of the system in tests detailed below. Indepen-
dent test nets of three to four devices were assembled for each of the link types under
consideration.

The size of these networks was limited to this small number of devices due to the time cost
of assembling large networks by hand and the number of devices practically available to
me for conducting the tests. Future work should consider larger networks of these devices
and/or extend the preliminary simulation work discussed in Section 4.3.

4.2. Performance benchmarks
Performance evaluations were performed for each link type to provide a comparison
between them, and to enable analysis of which layers might be responsible for slowdowns.

1. An initial test characterizes the performance of the physical layer only — e.g. what
is the actual speed my UART is capable of running at, with the consideration of my
software in the loop, but no link or network protocols. This is meant to establish any
deviation from the nominal bitrate for the link: due to overhead and programming
particularities, a 115200 baud UART, for instance, might in reality communicate slower
than 115.2 kbit/second.

48



3.3V 3.3V 3.3V

TX

RX

TX

RX

TX

RX

TX

RX
MCU 1 MCU 2 MCU 3

Figure 17: UART test network and topology. ESP32C6 microcontrollers on “Xiao”  boards are
connected to their neighbors, forming a point-to-point network.

2. A UDP echo test evaluates the overall bidirectional throughput capabilities of the
system with both interstice  and an IP stack in the loop. These are conducted over a
single network hop for the sake of comparison with the physical layer test.

4.2.1. Physical layer

The results of these tests are shown below: Figure 20 evaluates raw physical-layer echo
throughput. A transmitter device sent 64-byte payloads to a receiver as fast as possible,
and the receiver echoed them back on the same link. The transmitter recorded the number
of bytes sent and received over a 10-second window at various configured physical layer
rates across each link; the overall throughput per second is indicated in the figure.

As the caption in Figure 20 notes, we see substantially lower roundtrip performance for
I2C and CAN buses compared to UART because they are half-duplex, where UART is full-
duplex, meaning that we should expect the total bidirectional throughput to be on the
order of half that of UART. This puts the overhead of their byte-stream abstractions in
the same ballpark (which shows a remarkably flat 80% utilization).

It bears mentioning that that none of these systems use DMA acceleration due to a
lack of peripheral and/or HAL support: UARTs and I2C are programmed and read using
FIFOs, and CAN uses a direct register interface to write and FIFOs to read. This likely
imposes a speed cost compared to a theoretical system using DMA bidirectionally with
all peripherals.
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Figure 18: CAN bus test network and topology. ESP32C6 microcontrollers on ESP32C6 “Super
Mini” boards  are connected to per-device CAN drivers. The CAN drivers are connected
together to form a connected bus, which carries encapsulated IP traffic via interstice . This
configuration was tested to support CAN speeds up to 1Mbps, the fastest supported rate for

the ESP32C6′s CAN peripheral.
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Figure 19:  I2C test network and topology. Four RP2040 microcontrollers (on “RP2040 Zero”
PCBs ) are connected in a linear topology sharing +5V, ground, and I2C clock and data.

4.2.2. Transport layer

Figure 21 shows the UDP echo test results. This test used the same basic configuration as
the physical layer tests: a transmitter device and an echo device. The transmitter sends
64-byte UDP packets to the echo device as fast as it can, and the echo device responds
with the same packet.

Notably, though this test also used payloads of 64 bytes, this was the size of the UDP
payload only. Counting the UDP header (8 bytes), the IPv4 header (20 bytes), and PPP
framing and escape sequences (8 bytes), the total transmitted frame sizes were 100 bytes.
Figure 22 adjusts the data from Figure 21 by scaling recorded data up by a factor of 100

64 ≈
156% to account for these complete transmitted frame sizes. Notably, this indicates that
UART at 9600 baud actually exceeded the baseline physical speed tested for this link rate,
achieving around 120% utilization relative to baseline. I suspect this to be because the test
configuration lucked into a preferable timing situation compared to baseline — the right
synchronization primitives were scheduled in the right order: more work is required to
establish if this is true.

We can see from these figures that link utilization is near-perfectly efficient at low speeds,
but as link speed increases, the higher layers become less capable of taking advantage of
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Figure 20:  Throughput across tested physical media, running against the software adapters
used to model them as abstract point-to-point byte streams (networking and link layers
inactive). The top-right figure doubles the measurements for I2C and CAN to correct for the
fact that they are half-duplex: only one transmitter can be active on a bus at a given time, so
effective PHY unidirectional rate is cut in half, or put another way, twice as much effective
traffic passes through the bus for a single roundtrip compared to UART. The bottom link

utilization graph is calculated based on this corrected data.

available throughput, dropping off to about 20% when approaching 1Mbit/second. This
behavior makes sense at a first glance, as timing requirements to top off and drain data
to/from FIFOs become more stringent as data rates get faster, but we would expect the
same fall-off to appear in the physical layer tests; since we don’t, it is question-begging
that this effect only appears here.
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Figure 21:  Comparative UDP echo throughput across tested physical layers. As in Figure 20,
the top-right figure doubles the CAN measurement to account for the fact that it’s half-
duplex. The bottom utilization plot is calculated using this corrected data. Previously-unseen
bugs appeared in the I2C implementation when running it at sustained high data rates
in combination with PPP, causing it to crash; unfortunately, data for that medium is not

currently available.

4.2.3. Diagnosing performance

More work is required to diagnose the reason for throughput fall-off at higher link speeds.
I was able to achieve a substantial (more than 2x across-the-board) performance uplift for
UART compared to a previous testing iteration by increasing buffer sizes, tweaking the
IP stack’s socket ingress/egress ordering, and selectively moving certain data processing
into elevated-priority interrupt contexts, but capturing full performance at high link rates
remains elusive.

EVALUATION 53



Figure 22:  Echo throughput for UDP payloads calculated using complete PPP frame sizes. As
in Figure 20, the top-right figure doubles CAN’s measurement to account for the fact that it’s

half-duplex. The bottom utilization plot is calculated using this data.

Symptomatically, in my investigation of UART performance, RX FIFO overflows at the
transmitter node (i.e. caused by responses from the echo device) are the proximal cause
preventing sending packets faster at higher link rates; when overflow errors occur, the
whole 100-byte PPP frame is trashed and becomes wasted bandwidth. These suggest that
the transmitter node is not draining the RX FIFO frequently (or consistently) enough.

I hypothesize that this effect is an artifact of imprecise or inconsistent processor timing
in filling and draining peripheral I/O blocks, as I suggested earlier. At 960kbps (the fastest
UART rate I evaluated), a 100-byte frame is transmitted in 833𝜇𝑠, so 100𝜇𝑠 of FIFO
underutilization would mean a 12% decrease in throughput. By contrast, for a link running
at 115200 baud, a 100 byte frame is transmitted in 6.9ms, meaning that a 100𝜇𝑠 timing
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deviation only creates a throughput impact of 1.4% — it makes sense that performance
becomes more sensitive with higher rates.

As UART data handling occurs in an interrupt context, my primary suspect for these
slowdowns is overuse of critical sections, which by definition would exclude the UART
handler from running. I suggest that we don’t see this slowdown effect on the physical
layer tests because they make very little use of multitasking (they’re not running the IP
stack or PPP link drivers).

As a next step, future work should perform a similar performance test on a microcon-
troller system using DMA for peripheral I/O. This would take the processor out of the I/
O loop, enabling us to determine whether that indeed was the bottleneck.

These inferences are grounded somewhat by a simulated test I subsequently performed on
a Windows PC, which used the same UDP echo code to achieve a round-trip throughput
of 560kbps across an in-memory channel artificially limited to a transmit rate of 960kbps
and a simulated FIFO size of 64 bytes. Taken together with the tests from Figure 20 and
the presence of FIFO overflow errors, these factors suggest that it may be specifically the
interface with the I/O peripheral that is our bottleneck.

4.3. Supported network size
As a first-order upper-bound on maximum network size and for validation of basic system
function, random tree-like networks (e.g. Figure 23) of selected sizes were generated and
simulated on a Linux laptop equipped with an AMD Ryzen 7 7745HX CPU and 32 GB of
DDR5 DRAM.

The system was able to support UDP unicasts between random nodes for networks of
sizes up to 5000 nodes using the transparent bridging forwarder, and I have no reason
to think that larger networks would not work; these limitations appeared traceable to
configurable memory bounds that could be increased.

See the random_graph  and random_graph_unicast  files in the source code for this tests.

4.4. Upper-bound forwarding throughput
Tests (Figure 24) were conducted in-memory on a Windows host (Intel i7-12700KF, 64
GB DDR4) to determine maximum throughput across the generic packet forwarder alone,
as a presumed upper bound for performance when deployed in embedded systems. The
test was single-threaded and configured to run in the embassy  executor. Code was
release-optimized ( -O3 ) and logs were disabled. The in-memory I/O channel provided
by embassy_net_null_modem  was used for packet ingress and egress. A mock packet type

EVALUATION 55



Figure 23:  Example randomly-generated net graph for maximum network size evaluation.

consisting of only a data payload of 1024 bytes was used; forwarders treated it as a
broadcast. The test can be found in the throughput_test  file.

The maximum throughput rate measured by this test was 579 MB/s using the hub
forwarder and 578 MB/s for the bridging forwarder, which suggests that the forwarders
are unlikely to bottleneck network performance.

Figure 24:  In-memory throughput for interstice  across each of the packet forwarder
implementations.
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Figure 25:  RTT latency as a function of packet size.

4.5. ICMP echo ( ping ) tests
I measured round-trip-time across a number of packet sizes to investigate performance
of the approach. Results are summarized in Figure 25.

These tests were conducted between an MCU and a Linux system, across a link making
use of a USB CDC-ACM device connected to the Linux kernel IP stack via an instance of
pppd  [27]. The pppd  instance was configured in modem mode, with crtcts  set, without
authentication, with an MTU of 1500 bytes, and with LCP echoes (used as keepalives)
every 1 second. The MCU in use for this test was the ESP32C6; firmware was compiled
with release optimizations and logging was completely disabled. The test was performed
using the ping_test  script and firmware in the project repo, which simply instantiates
interstice  with an IP stack responsible for responding to ICMP echo packets. The script
allows for packet-size sweeps of fixed-count ping  invocations.

The noticeable knee in Figure 25 at a packet size of just under 800 bytes was repeatable,
and was even more noticeable on a previous test that still had debug logging enabled
(which tends to contribute to substantial performance hits, as in some situations the whole
packet contents are logged).

EVALUATION 57



Figure 26:  RTT latency as a function of packet size with logging enabled.

Figure 26 shows more clearly the knee at about 800 bytes. I am still uncertain why there
is an inflection point here.

4.6. Functional demonstrations
4.6.1. Device-hosted web control page

This demo (Figure 27) shows Web-based device control via device-hosted HTTP servers.
Each device hosts its own HTTP server, which is made transitively over the network. The
servers presently expose a root webpage and a backend API which enables control of an
onboard LED.

This demo showcases the utility of using standard IP for device interfacing: the web page
implements autonomous device control in JavaScript (blinking the LED on a timer).

This test presented noticeably sluggish page load times (which only increased with the
number of hops to the target device). Wireshark investigations surfaced consistent TCP
retransmissions and duplicate acks, as the Linux host loading the webpage would time
out. These duplicate packets were not seen on comparatively fast links, such as a page
load over the direct CDC-ACM link to a network edge device.
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Figure 27:  Screenshot of simple device-hosted HTTP control webpage, served through an
interstice  network, which provides control of device LEDs. The device IP was resolved

automatically by the host system using mDNS from the name interstice.local .

4.6.2. Networked machine

scriptorium  (Figure 28) is a PCB milling machine I previously built, substantially derived
from Modular Things [38] and the Clank [39] machine base, which is controlled as a
distributed machine: each stepper motor has its own microcontroller driving it. These

Figure 28:  Left: scriptorium  PCB milling machine. Right: connection diagram of machine
adapted to use interstice  networking for control.
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Figure 29:  scriptorium  milling a PCB blank, controlled over interstice  network.

microcontrollers each run their own position control loop driving their respective stepper
motor. Formerly, the position setpoint was controlled from a host computer using a
custom protocol over USB CDC-ACM (virtual serial ports).

I rewrote the motor controller firmware to use interstice  for communication — each
motor accepts commands to update the position setpoint via UDP rather than the former
COBS-framed [26] custom serial protocol. As a result, the machine is fully controllable
over the network and capable of performing milling operations; the system in operation
is shown in Figure 29.

4.6.2.1. Motion Performance

scriptorium ’s firmware stepper controllers perform microstepping on the half-bridges
that drive each of the motor stepper coils. Coil current magnitude is PWM-controlled
using dedicated PWM peripherals on the RP2040 MCU at a frequency of 61kHz; a
firmware trapezoid generator evaluates motion parameters every 200us (at a rate of 5kHz),
and consults a 1024-entry sine LUT for microstepping. The half-bridge gates setting
motor direction can be actuated at up to the same 5kHz rate if commands are received
this quickly.

It may be useful to compare the approach to a popular integrated stepper driver,
Analog Devices’ TMC2209 [40]. The PWM frequency range recommended by the driver’s
datasheet is 20-50kHz, which my system exceeds. The internal step generator can be
configured to step at up to 224 × 0.715 = 12 MHz using the integrated clock source,
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greatly in excess of my maximum supported rate of 5kHz, though my system will simply
skip intervening microsteps if motion requirements demand.

Register write commands can be accepted by the TMC2209 at a maximum baud rate of
750,000, assuming the internal clock at 12MHz is used. Standard command packets are 64
bits, so this is a rate of just under 12k packets per second. Extrapolating from Section 4.2.3,
our maximum effective data rate through UDP packets over a 960kbaud UART link is
on the order of 12kB/s. For a data payload of size 4 bytes (a uint32 target position), we
can assume 36 bytes of overhead as observed in Section 4.2.3 for a total packet size of 40
bytes, meaning an effective packet rate of 300/s, just 2.5% of the rate supported by the
TMC2209. Of course, these advantages should not be surprising, as the TMC2209 presents
an integrated solution.

The key benefit of my system is that the TMC2209 supports 4 stepper addresses on a single
network without additional support, while my interstice -based solution in principle
supports the whole IPv4 or IPv6 address space.
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5. Future Work
In this section, I consider possible future extensions to the work completed in this thesis.

5.1. Memory considerations
Memory allocation strategies were an item of significant concern in the implementation,
mostly centering around packet buffering. The considerations here include that allocation
from the system heap is undesirable on embedded systems, as it can be exhausted and
in general will behave nondeterministically, especially in the presence of any other
allocating tasks on the system. However, heap-allocation approaches have benefits over
the static buffers that my system actually adopts, as allocation efficiency will be better in
the average case, supposing non-pathological fragmentation characteristics.

Future work might consider making use of linked-list allocation strategies like lwIP
[9], with a mind towards supporting fragmented allocations. This approach seems to
represent the best of both worlds, allowing flexible allocation and avoiding allocation
failure caused by heap fragmentation. It must be acknowledged that these benefits do
come at the cost of programmer ergonomics and runtime efficiency, however, as the list
data structure trades off exactly the benefits of a flat homogeneous memory space for its
apparent benefits in this use case.

5.2. Foreign Function Interface (FFI)
interstice  currently ships without a C FFI. This limits its applicability to Rust-based
embedded projects and therefore misses out on the opportunity to interoperate and
provide utility to the larger population of C and C++ embedded programmers (e.g. in
Arduino). Targeting C has not been a development priority, but adaptation of the modular
dynamically-dispatched interfaces to FFI is nonetheless technically straightforward and
a clear win in terms of usability.

The largest impediment to this implementation is choosing an approach for integrating
platform scheduling and synchronization primitives into Rust async, which are a strict
requirement for interstice . The simplest FFI-compatible asynchronous executor imple-
mentation could simply be polled in a hot loop and should provide for portable function,
albeit with substantial performance and ergonomics sacrifices. In this minimal case, it
would be possible to get away without explicit integration of platform synchronization
primitives: the read and write functionality for each attached interface would simply end
up being polled in a hot loop. It’s expected that this approach would produce a crude
but functional stack that could serve the needs of relatively simple embedded systems
projects.
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Work beyond this minimal integration might consider full async  support for FreeRTOS
and other embedded runtimes using their platform-specific synchronization primitives.
embassy-sync ’s RawMutex  type can be generically extended to platform mutex types,
enabling most of the functionality required to port interstice .

5.3. Energy usage
A performance metric of substantial interest on embedded systems is energy usage, as
embedded devices commonly run on battery power, so energy spent on communications
places a limit on device lifetime between charges (if charging is even possible at all). I did
not perform an energy or power evaluation as part of this work, but it would be highly
interesting to look at in the future: it seems plausible that the wired links considered
here could potentially be lower-power than even minimally-duty-cycled 802.15.4 radios
if effective power-optimization techniques are employed — measurements by STMicro-
electronics in [41] suggests that mean double-digit microampere operation of low-power
UART devices is possible if devices enter sleep mode between transmissions. The kind of
niche I suggest might be filled here is illustrated in Figure 30.

In order to achieve these power characteristics, the network system would need to be
awake at relatively low duty cycles, as active microcontroller power draw is commonly
on the order of multiple milliamps. This requirement presents work for the interstice
implementation as it exists currently: it would need to be adapted to minimize chatter
(presently actively leveraged to detect link state) and resume from deep sleep while
maintaining the PPP state machine.

However, on the other side of this energy issue, it bears considering that if application
concerns demand high duty cycles on network or microcontroller activity, wired links
could be advantageous over wireless technologies, as wireless radios tend to draw a
substantial amount of power while turned on. The power characteristics of wired links
are on the other hand are likely to be small, as the energy required to transmit a single
bit is typically associated with driving a small number of low-capacitance conductors to
a minimal voltage.
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Figure  30:  Perceived vacancy in the tradeoff between high-energy, high-speed, reliable
communication devices and low-speed, extremely low-power WSN approaches. The dashed
line represents a perceived Pareto frontier, the low-right corner of which I suspect could be

expanded upon by low-power wired techniques.
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6. Conclusion
This thesis has discussed the design and evaluation of an approach for constructing
IP networks suitable for deployment on embedded devices across common serial links,
providing for transitive connectivity through various packet forwarding approaches.
PPP was adopted as a generic link for its wide portability and utility in negotiation of
configuration options. The discussed design was evaluated by a number of performance
benchmarks and showcased on several integrated systems.

This work successfully demonstrates the feasibility and utility of constructing these
multihop, point-to-point networks. The approach showcases nontrivial functionality
built on these networks, and has the potential to support previously difficult-to-attain
connectivity for devices without dedicated networking peripherals, including brownfield
projects, prototypes, and various applications requiring and using implicit networking
which is presently difficult to attain. Benchmarks demonstrate that for these use cases,
where having network connectivity at all is a substantial boon, performance on at least
small networks proves acceptable.

This being said, work remains to advance the project to a state of general readiness. The
software remains relatively unoptimized, scoring at times less than 50% of underlying
line rate for overall throughput. While having network connectivity at all is better than
not, for UARTs these kinds of limitations can put us in the performance territory of fifty-
year-old modems, which should be avoided if possible. Compression techniques should
also be considered in more depth, as they have the potential to save substantial amounts
of bandwidth on these limited links. It remains to complete a proper routing approach,
presumably based on AODV or similar, and general challenges nontheless relevant to
our approach exist IP in regards to the integration of autonomously-administred private
subnets.

My future projects in this domain will take these considerations into account, focus on
broadening the library of links with integrations built into the software system, and look
at mechanisms for and implications of overlaying such functionality on top of existing
networks — a TCP connection is just a byte stream, after all.
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A. Project source code overview
This section provides a summary of the source code developed during this project. Any-
thing used in this thesis which has not been upstreamed to another project (upstreams
are summarized in Appendix B) is hyperlinked and described here.

In general, source code resources are provided as links to public Git repositories, which
can be browsed in a web UI or cloned over HTTPS without authentication. The version
of the code used to produce the results reported in the thesis can be found at the tag
npry.sm_thesis.final  in each repo unless noted otherwise (e.g. experimental results
earlier in the thesis). An archival copy of the code used in this thesis is also made available
on Zonodo .

Note: see Appendix B for patches that have been submitted to upstream.

A.1. Project repositories
A.1.1. interstice

Available here . This is the primary repo for the thesis. If you are interested in building
or using any of the functionality presented in this thesis, you only need to download this
repo; Rust’s cargo  package manager and build tool (required to build the project) will
take care of fetching the rest of the dependencies automatically.

A brief breakdown of the components:

• interstice  is the root package providing the package forwarder implementation
and abstractions, with source code available in /src . I plan to publish this in Rust’s
public crate registry , but dependent functionality must be upstreamed first (direct VCS
dependencies are not allowed, which interstice  makes liberal use of).

• embedded  provides functionality specific to the embedded platforms used in testing and
evaluation for the thesis (bringup code, peripheral and runtime configuration, etc.) and
contains the actual binary programs used for testing ( /embedded/src/bin ).

• heapless_list  provides sister functionality to the heapless  family of crates, which
implement versions of typically-heap-allocated data structures such as Vec  and
String  with const -sized inline storage instead. heapless_list  (this package) pro-

vides a singly-linked list type with inline storage and integer- rather than pointer-based
node indexing. It is used in a number of places in interstice  to store data that is
expensive to copy but needs to be dynamically reordered — to my knowledge there is
no non-allocating linked-list functionality in the Rust ecosystem at the moment. It will
be contributed to Rust’s public crate registry .
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• dyn_embassy_net  provides abstractions and wrappers that enable embassy_net ’s
Driver  type to be dynamically dispatched. This enables the interstice  packet
forwarder to simultaneously hold a heterogeneous collection of link drivers. dyn_phy
provides the same for smoltcp  and its smoltcp::phy::Driver  trait.

• embassy_net_null_modem  and smoltcp_null_modem  provide a virtual “null modem
cable” (respectively compatible with embassy_net  and smoltcp ), a lower-layer inter-
face that can connect two interstice  instances together purely in memory. This
functionality is how the host-only functionality in Section 4 was tested.

The scriptorium  (milling machine) firmware was developed in a branch and is available
under the npry.sm_thesis.final_scriptorium  git tag (or also in the Zonondo linked
above).

A.1.2. flip

Available here .

Spiritually, this is an extension of flipperzero-rs , the Rust bindings for the Flipper
Zero. This code was developed with the intention of using the Flipper as an interactive
terminal device that might be used to configure, debug, and visualize network traffic as
part of this thesis project. As of the time of writing, work on this code has been suspended
for the sake of time.

It implements:

• Safe wrappers around Flipper Zero SDK GUI types.
• Integration with embassy_executor , enabling Rust async  on the Flipper (currently:

partial support only). See Section 5.2 for potential application implications.
• embassy_time_driver  support, providing datetime and alarm support.
• A critical_section  implementation for the Flipper Zero.
• Revised access to the Flipper notification service, enabling dynamic construction of

notification sequences.
• Initial embedded_io{,_async}  trait implementations for the Flipper Zero UARTs.

In the future, I intend to polish this work and upstream most of it into flipperzero-rs .

A.2. Forks
These are included in the interstice  repo  under the /3p  (“third party”) directory
unless otherwise noted.
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A.2.1. embassy

An overview of Embassy can be found at Appendix B.2. This section describes notable
additional changes yet to be upstreamed.

A.2.2. embassy-net-ppp : timeouts, reconnects

embassy-net-ppp  is a link layer driver that makes use of ppproto ’s implementation of
PPP in HDLC-like framing to provide an embassy-net  connection. The changes imple-
mented here support timeout and features added to ppproto  (described below).

A.2.3. ppproto

ppproto  provides a #![no_std] , I/O-free implementation of PPP [21] and PPP in HDLC-
like framing [22] in Rust. It is owned by the embassy  authors.

Changes yet to be upstreamed include:

• Supporting ConfigReq  timeouts in LCP and NCPs (this is required to recover from
missed messages or state machine desync, e.g. because one end of the connection
restarts)

• General support for connection reestablishment logic from Dead  state
• Correct handling of TermReq  messages and generation of TermAck s

A.2.3.1. Future work: buffering

The buffering approach used in this package leaves something to be desired — PPPoS
frames are decoded into an intermediate buffer, which is read by PPP in one shot. But
notably, the parsing semantics of PPP’s LCP and NCP protocols are unambiguous and
context-free, meaning that no backtracking is required to parse these messages. This
suggests that it would be possible to adopt an incremental decoding approach that could
eliminate intermediary buffers, which for systems with multiple PPP links contribute not
insignificantly to system memory usage. The buffers consume MTU * n  bytes of memory
consumption, which even for a relatively small MTU value (say 256) and number of links
(say 4) leads to an additional 1kiB of allocated memory. On an embedded microcontroller,
even a larger one, this is not insignificant.

The other side of this issue is that an incremental parsing approach does however initially
accept and process messages with invalid FCS. Most likely the appropriate action on many
links will be to simply reset and restart the relevant option exchange state machine in
this case, as internal state may have become misconfigured. This may not be practicable
on links that experience regular errors, which should likely retain the buffering behavior.
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A.2.4. ssmarshal

Original repo here .

ssmarshal  is a minimal, non-allocating serialization/deserialization crate suitable for use
in resource-constrained environments. It is a transitive dependency of interstice , and
recently became incompatible (indirectly) because Rust’s Error  type moved from std
to core .

This fork updates ssmarshal  according to the new organization of Error .

I intend to upstream this patch in the future.

A.2.5. async-channel

Available here  and here .

The portable-atomic  Rust crate provides atomic integer types and derived functionality
for all hardware platforms, even those without atomic intrinsics. It does this by falling
back to a critical_section  implementation in cases where intrinsics are missing.
This enables most dependencies in the transitive dependency closure of atomic integer
and pointer types, e.g. Arc  (Rust’s atomically reference counted smart pointer type) to
function on any platform that can provide a critical_section  implementation, albeit at
a performance cost.

async-channel  is an in-memory channel type dependent on alloc::sync::Arc  rather
than portable_atomic_util::Arc . This fork adds a feature flag to async-channel  to
switch to portable_atomic::Arc  for use on embedded platforms.

I intend to upstream this patch in the future.
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B. Open-source contributions
The work conducted in this thesis involved a number of contributions to existing open-
source projects, which are described below.

Note: see Appendix A for project repos and forks with patches that have not (yet) been
upstreamed.

B.1. Rust liballoc , libcore
One contribution was made to each the core  and alloc  libraries of the Rust program-
ming language. These represent the subset of the standard library which operates without
OS facilities and is therefore used on embedded microcontrollers.

B.1.1. const -ify String::as_str , Vec::as_slice

Rust has support for const  expressions, which are evaluated at compile-time, comparable
to constexpr  in C++. These were adopted after the language was released and are
gradually being integrated into library functionality on an as-needed basis.

String  and Vec  are the heap-allocated string and vector types provided by Rust,
comparable respectively to C++‘s std::string  and std::vector . They provide methods
String::as_str(&self) -> &str  and Vec::as_slice(&self) -> &[T] , which produce

slices (references endowed with a length, comparable to e.g. C++ std::string_view  or
Python’s bytes ) into their contents. Previously, these methods were not const , despite
being const -computable; this contribution makes them and several other useful methods
(including len , capacity , is_empty ) const  (Listing 3).

As Rust code cannot determine whether it is being evaluated at compile-time, this enables
variance over const ness for these types.

The feature was implemented here  behind the const_vec_string_slice  unstable feature
flag, is tracked here , and as of the time of writing is undergoing a stabilization process
here .

const fn str_is_short(s: &str) -> bool {
    s.len() < 5
}

const EMPTY_STRING: String = String::new();

// Previously not available.
const EMPTY_STRING_IS_SHORT: bool = str_is_short(EMPTY_STRING.as_str());

Listing 3: Standard library contribution enables const -evaluation of length for str , which
was previously unavailable.
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fn get_bytes(ip: &Ipv4Addr) -> &[u8] {
    // Copy address bytes into stack local.
    let bytes: [u8; 4] = ip.octets();
 
    // Trying to return a reference to function local; invalid reference
in caller 
    // scope. Indeed, the Rust compiler outlaws returning a reference to
a local.
    // We want to take a reference into the IpAddr argument instead.
    &bytes
}

Listing 4: Illustration of pointer lifetime constraints for IP address types, old approach.

B.1.2. IPAddr::as_octets

This contribution provides additional functionality to core ’s IP address
types: core::net::IpAddr , core::net::Ipv4Addr , and core::net::Ipv6Addr . Meth-
ods IpAddr::as_slice(&self) -> &[u8] , Ipv4Addr::as_octets(&self) -> &[u8; 4] ,
Ipv6Addr::as_octets(&self) -> &[u8; 16]  were provided, which enable interpretation
of these types as network-order array references (or a slice in the case of IpAddr ).

Previously, these types exposed only .octets() -> [u8; N] , which enabled a copy of the
address contents as bytes onto stack memory (Listing 4). While this was acceptable in
many cases, references to stack memory have limited validity, and heap allocation is not
always acceptable (indeed, it is actively undesirable in many embedded contexts).

We would prefer to be able to take a reference directly into the owning IpAddr  type, such
that this reference is valid exactly as long as the IpAddr  is, and the owning memory is
shared (i.e. additional storage is not required).

This contribution implements this functionality with as_octets()  functions, enabling
the behavior shown in Listing 5.

The feature was proposed here , implemented here  behind the ip_as_octets  unstable
feature flag, and stabilization is tracked here .

B.2. embassy

The embassy  project provides a collection of library packages that support writing Rust
programs on a variety of embedded microcontrollers with use of Rust’s async  facilities.

const fn get_bytes(ip: &Ipv4Addr) -> &[u8] {
    ip.as_octets()
}

Listing 5: const -ref access for IP addresses in Rust.
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static CH = embassy_sync::pubsub::Channel::new();

let task_handle = spawn(async move {
    let sub = CH.subscriber();

    loop {
        let val = sub.await;
        println!("{val}");
    }
});

// Fixed by this patch.
CH.publish_immediate(4);

// Task prints '4'

Listing 6: Method visibility fix for embassy_sync::pubsub .

B.2.1. embassy_sync::pubsub::Channel  method visibility

embassy_sync  is a library that provides runtime-agnostic synchronization primi-
tives and data structures designed to be allocation-free and async -compatible.
One structure exposed by the library is pubsub::Channel , which provides an
in-memory channel supporting multiple simultaneous publishers and subscribers
with broadcast semantics. This change fixes a set of method visibility is-
sues, restoring pubsub::Channel::publish_immediate , pubsub::Channel::capacity , and
pubsub::Channel::is_full  to public visibility — see Listing 6.

Implementation here .

B.2.2. impl futures::Sink for embassy_sync::pubsub::Pub

See the previous section for an overview of embassy_sync::pubsub . The
embassy_sync::pubsub::Channel  type provides a publish-only handle to itself
via Channel::publisher() -> Pub  and a consume-only (subscription) handle via
Channel::subscriber() -> Sub . The Sub  handle implements the futures::Stream

trait, which supports the production of an asynchronous stream of values as they
become available within the channel. A dual futures::Sink  trait exists, supporting
asynchronous submission of values to the channel as space becomes available, but it
was not implemented for Pub . This contribution provides that trait implementation for
embassy_sync::pubsub::Pub : see Listing 7.

Implementation here .
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static CH = embassy_sync::pubsub::Channel::new();

let task_handle = spawn(async move {
    let sub = CH.subscriber();

    loop {
        let val = sub.await;
        println!("{val}");
    }
});

let publ = CH.publisher();
let mut stream = futures::stream::repeat(5);

// This method call requires that publ implement `futures::Sink`.
publ.send_all(&mut stream).await;

// Task repeatedly prints '5'

Listing 7: futures::Sink  implementation for embassy_sync::pubsub::Pub .

B.3. Miscellaneous
B.3.1. http : #![no_std]

http  is the de-facto standard crate in the Rust ecosystem for describing HTTP types. It
does not implement server or client functionality, but rather serves as shared location for
the definition of types, constants, and utility functionality (status codes, methods, headers,
a Request  type, a Response  type, and a few other useful facilities that are universal to
any participant in the HTTP ecosystem).

Up until now, it has had hard dependencies on Rust’s standard library. This contribution
makes that dependency more granular and controllable via feature flags – the library can
now be included on embedded platforms by selecting the alloc  feature but not std ,
with little compromise to functionality.

Implementation here  (upstream pending as of writing).

B.3.2. frunk : #![no_std]

frunk  is a functional programming toolkit for Rust. This contribution eliminates its
dependency on Rust’s OS-dependent standard library, making it suitable for use on
embedded microcontrollers and other constrained environments.

Implementation here .
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B.3.3. Flipper Zero: GPIO interrupt ordering fix

The Flipper Zero  is an “electronics multitool” based on the STM32WB55 microcontroller.
It provides a screen, D-pad, speaker, sub-GHz software-defined radio transceiver, infrared
transceiver, Bluetooth radio, OneWire interface, and array of I/O ports exposing discrete
GPIOs and processors buses.

This change is a patch to the Flipper Zero firmware which fixes a sequencing issue with its
GPIO interrupt handlers. Relevant context is that the firmware accepts interrupt handlers
defined by user applications. Previously, the firmware’s own handlers would first call the
user code, then clear the interrupt status for the given pin after the user code had run.
This meant that any interrupts that fired within the user code could not be observed, as
the interrupt status was always unconditionally cleared afterwards.

This contribution clears interrupt status only before user code runs to resolve this issue.

Proof of concept , merged fix .
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